Two-dimensional Fourier Transform Technique for analysing Random Structures
نویسندگان
چکیده
منابع مشابه
Nonseparable two-dimensional fractional fourier transform.
Previous generalizations of the fractional Fourier transform to two dimensions assumed separable kernels. We present a nonseparable definition for the two-dimensional fractional Fourier transform that includes the separable definition as a special case. Its digital and optical implementations are presented. The usefulness of the nonseparable transform is justified with an image-restoration exam...
متن کاملTwo dimensional discrete fractional Fourier transform
Fractional Fourier transform (FRFT) performs a rotation of signals in the time—frequency plane, and it has many theories and applications in time-varying signal analysis. Because of the importance of fractional Fourier transform, the implementation of discrete fractional Fourier transform will be an important issue. Recently, a discrete fractional Fourier transform (DFRFT) with discrete Hermite...
متن کاملTwo-Dimensional Clifford Windowed Fourier Transform
Recently several generalizations to higher dimension of the classical Fourier transform (FT) using Clifford geometric algebra have been introduced, including the two-dimensional (2D) Clifford Fourier transform (CFT). Based on the 2D CFT, we establish the two-dimensional Clifford windowed Fourier transform (CWFT). Using the spectral representation of the CFT, we derive several important properti...
متن کاملTwo-dimensional affine generalized fractional Fourier transform
As the one-dimensional (1-D) Fourier transform can be extended into the 1-D fractional Fourier transform (FRFT), we can also generalize the two-dimensional (2-D) Fourier transform. Sahin et al. have generalized the 2-D Fourier transform into the 2-D separable FRFT (which replaces each variable 1-D Fourier transform by the 1-D FRFT, respectively) and 2D separable canonical transform (further rep...
متن کاملOptimal Padding for the Two-Dimensional Fast Fourier Transform
One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 1961
ISSN: 0028-0836,1476-4687
DOI: 10.1038/190431a0